Fukuoka to extend SkyTrain subway

Fukuoka to extend SkyTrain subway

Featured above: The Nanakuma Line in Fukuoka uses LIM propulsion (SkyTrain technology)

Above video: (Japanese) report about the Nanakuma Line extension project in the City of Fukuoka

Japanese cities are leading the way in their investment in the same linear motor technology systems powering the Vancouver SkyTrain system.

A few weeks ago, the City of Fukuoka confirmed a major 1.6km extension of its Nanakuma Subway line, from its present terminus in Tenjin-Minami to the city’s intercity train terminal at Hakata Station. This extension will create a new extension from the south end of the Tenjin city centre area to Hakata Station, while passing underneath Canal City – a major mall in the city and Japan’s largest private development complex.

mainvisual02
Map of the Nanakuma Line extension on the Fukuoka city website

This extension will make the Nanakuma Line more accessible to intercity travellers arriving via the bullet train (Shinkansen) from Osaka, Kagoshima or Nagasaki at Hakata Station, and it will also improve transfers to the city’s Airport Line subway and connections to the airport, by allowing travellers to bypass the most congested section of the airport line at Nakasu-Kawabata.

Construction for this extension is already ongoing and is visible on Fukuoka’s city streets. The new extension is expected to be complete by 2020.

This slideshow requires JavaScript.

I am pleased to hear about this extension as Fukuoka is the largest city in Kyushu, the southwestern area of Japan where I lived in during my past year. In my time there I made frequent visits to the city, including frequent use of its subway lines. The Nanakuma Line was the first “SkyTrain technology” subway I visited, right after I arrived last September.

Sendai opening brand new SkyTrain technology line next week

Next week, Sendai will be proceeding with the opening of its east-west Tozai Line – a brand new subway system constructed with linear motor (SkyTrain) technology.

The City of Sendai has already hosted a test ride, attended by over 6000 would-be passengers of the new rapid transit line.

Above video: (Japanese) news report showing test rides last week on the Sendai Subway Tozai Line

The test rides were successful and the line is on track to open for revenue service in exactly 1 week on December 6, 2015.

Recommended reads:

We can learn from Japan on transit delays/incidents

We can learn from Japan on transit delays/incidents

Video shows that in Japan, even the train evacuations are orderly 【RocketNews24】

As reliable as Japan’s public transportation system is, with so many trains running from morning to night, eventually some sort of problem is going to occur. Passengers heading to work or school in central Kobe had their commute interrupted at approximately 8 a.m. on November 16, when it was discovered that an overhead line had snapped on the Japan Railways (JR) Kobe Line between Kobe and Motomachi Stations.

Seeing that the repairs would take some time to complete, some 5,000 passengers were instructed to leave the carriages, which were stopped in an empty stretch of the tracks, and walk to the nearest station, as directed by JR staff who were on the scene.

Even in Japan, which is known for having one of the world’s supposedly most “punctual” train systems, delays and incidents can occur. Last week in Kobe, this was the scene on the city’s main JR rapid transit line after an incident with an overhead power-line was found, requiring a full shut-down of the system in Kobe and service disruptions throughout the 194km-long intercity rapid transit line.

If this sounds familiar, that’s because it does resemble some of the incidents that have plagued our SkyTrain system here in Metro Vancouver over the past few years.

I’m also sure many of you are aware of what happened to the SkyTrain yesterday (November 24th), when it was shut down in downtown due to a “power failure” incident that turned out to be a ‘one-in-a-million’ misplaced replacement rail part that moved on the tracks and struck/damaged the power shoe of an oncoming train.

Map of JR train lines in the Osaka/Kansai area. The blue line going west-east from Himeji to Maibara through Kobe, Osaka and Kyoto was the line affected.
[OPEN to enlarge] Map of JR train lines in the Osaka/Kansai area. The blue line from Himeji in the west to Maibara in the east was the line affected.
I was in Japan last week and happened to actually experience the Kobe incident in the video at the top of this post, although I wasn’t in Kobe when it occurred. Instead, I felt the ripple effects over 140km away at Maibara Station, on the eastern end of the line, as I transferred from another train from Nagoya intending to ride this particular line en route to Kyoto.

The featured photo at the very top of this post is my own picture of the “trains delayed” notice display I ran into when I arrived at Maibara Station. I could feel my stomach churn even more when I checked the departure time-boards on the station platform itself, which showed that westbound express trains had been completely cancelled.

This left me and perhaps several hundred other passengers waiting on the platform before having to crowd onto a smaller local train, which we would ride until another station down the line (Yasu) where express trains would re-commence. The incident was uncomfortable, cost me nearly 90 minutes in delay and had a major effect on my plans for the day.

This is, incidentally, longer than the approx. 60 minute delay I experienced yesterday when I was caught in yesterday’s SkyTrain delay. I started commuting from Surrey to the Main St. Station area to fulfill an errand, right after delays began at around 2:50PM. I went through stopped trains, crowdedness of the trains and crowded-ness again when I boarded a replacement shuttle bus at Commercial-Broadway Station.

SkyTrain has been through numerous shutdowns in the past year, which many have attributed to be an issue of system reliability. In actuality, many of them the result of the lack of an auto-restart system that was neglected by BC Transit in the 1990s; some of them were genuinely due to human error; and some of them just couldn’t be prevented no matter what anyone did.

Regardless of the cause, we don’t seem to handle these very well. Doors have been broken open, resulting in people walking on the tracks unauthorized and causing further delays as track power needs to be shut down. People tend to respond loudly and angrily on social media, not waiting for the investigation to blame TransLink on whatever happens.

There’s a lot that we can learn from the Japanese when incidents like these happen. In Japan, trains are so critical to the functions of life, responsible for moving millions of people every day in a very dense country. Punctuality is considered very important, and so train operators concentrate on providing the best service possible when everything is working. It’s important to understand that things can sometimes not work – and when that happens, instructions have to be followed and anger has to be calmed. Which is why the train evacuations showcased in the video were so smooth and orderly.

This train line didn't have emergency walkways at door-level like our SkyTrain system - so passengers had to climb down ladders to get onto the track.
This train line didn’t have emergency walkways at door-level like our SkyTrain system – so passengers had to climb down ladders to get onto the track.

The most important thing to remember is that at the end of the day, these incidents don’t actually happen that often – SkyTrain has maintained a statistical reliability that tops transit systems in other cities. I pride myself over having kept myself calm throughout yesterday, and hope that other passengers who were able to do the same do so as well.

See also: Vancouverites are Spoiled with SkyTrain – Vancity Buzz

We can’t let these incidents affect the way we think about transit and play our part in shaping major transit decisions, like the recent NO vote on the regional transit referendum. It’s easy to lose sight of the facts when you’re inconvenienced and made bitter, but at the end of the day, in doing you really aren’t helping anyone.

I’m noticing many commuters on Twitter talking about how reluctant they were to take SkyTrain today. If I had let the incident from last week stop me from using the JR train line again out of fear, I wouldn’t have been able to resume with my plans to visit Himeji Castle and take these gorgeous pictures….

This slideshow requires JavaScript.

Lastly, here’s a bit from the Rocketnews article that perhaps TransLink could take from for next time…

…we think what really sealed the deal is the Japan Railways representative who shows up on the platform at the video’s 0:27 mark, ready to apologize to those who were inconvenienced and hook them up with bottles of tea, which he opens for each person who walks by. Because hey, on the occasions when you can’t be punctual, you may as well be classy.

Man tea 1

Return to blogging: Life after 1 year in Japan

Return to blogging: Life after 1 year in Japan

Pictured above: A Compass card next to my personalized SUICA, the IC card used on Tokyo’s transit network.

I neglected to make a formal announcement on this blog before I left, but I’m sure many of you were following me this past year for my journeys in one of the most transit-developed countries in the world. My opportunity to live in this country came with a scholarship study program that I was admitted to last year, and brought with it a form of excitement in terms of not only getting to lived in a country I had dreamed of visiting for personal interest reasons, as well as further my personal ambitions – but to see what I could take back from a country that has developed what may perhaps be the world’s best, most comprehensive transportation network.

As a student without a lot of money (apart from my scholarship money) there wasn’t really a lot to expect, and I didn’t think I would make it much further than destinations near my hometown in Nagasaki prefecture – but I was determined to make it more than just a matter of staying in one city and picking up another language. Fortunately, I was proved wrong and it was thanks to the country’s excellent transportation system.

This slideshow requires JavaScript.

With the 3rd biggest domestic flight market in the world, the expenses of domestic air travel had dropped to the point where you could fly to other cities with just a few hours of earnings on minimum wage – this materialized for me in January when I was able to book no less than 7 individual flights with an airline for under $200 CAD. Train operators offered deals like the JR Seishun 18 Pass and Kintetsu Rail Pass that helped me cut down on the costs of intercity travel. All in all I was able to amass more than 10 weeks of travel experience, reaching all of the country’s biggest cities, and numerous areas in-between. I did this all with only the resources I had in my pocket and no drivers’ license, no car and no need for taxis to fill the gaps.

For a country with one of the world’s most prominent and largest automobile industries in the world, car usage in Japan is surprisingly low. The Japanese have lived with a built-in culture of utilizing transit options, boosted heavily by the small size and relative density enabling the inexpensive construction of nationwide train networks.

In my view, after a year of experiencing the country, Japan’s transportation excellence primarily comes from its advantageously small size, and its commitment to keeping transit networks around.  There are few areas in North America with the same kind of supporting density as can be found throughout this East Asian country, and you won’t be surprised to find that these areas also have well-built inter-city and intra-city train and transit systems. Many of the rapid transit train lines you’ll find in cities have been around for anywhere between 50 and 100 years, built in advance of developments with developments and communities orienting themselves around transit lines. Stations are meeting places, and are often community hubs with large pick-up and drop-off places and a large congregation of businesses. Often these businesses are built into the station itself.

Plaza 88's shopping district is directly integrated with SkyTrain's New Wetminster Station, and reminds me of a small-sized Japanese community hub. Photo: Foodology.ca
In Metro Vancouver, the Plaza 88 shopping district is directly integrated with SkyTrain’s New Wetminster Station, reminiscent of a small-sized Japanese community hub. Photo: Foodology.ca

We have a few examples of that here in Vancouver, the most prominent being the newly built Plaza 88 and Shops at New West Station, and I would really like to see more of them. Japanese cities have mastered the maximization of the accessibility of a train station. In large cities like Tokyo, major train stations are built under or adjacent to massive, 10-story shopping malls with every single service you can find. Businesses, including shops and restaurants, can set up their shops/restaurants at fewer locations than you would expect, because it’s fast and easy to get there from anywhere in the city. Many smaller businesses set up shop only at or near the busiest train stations, yet have no problem reaching and catering to a large amount of people from faraway places. The versatility, flexibility and cost-savings in having transit has proven to be a strong driver in Japan’s consumer economy.

Akihabara, which is famous for being Tokyo's pop culture district, is located at the intersection of two major train lines. The station itself has several stories of shops steps away from train platforms - and in the surrounding area, stores that cater to anime, manga and pop-culture fans don't tend to exist anywhere other than Akihabara because they don't need to. Akihabara is a community that is truly made possible by transit. (Taken by myself on Aug 4, 2015)
Akihabara, which is famous for being Tokyo’s pop culture district, is located at the intersection of two major train lines. The station itself has several stories of shops steps away from train platforms – and in the surrounding area, stores that cater to anime, manga and pop-culture fans don’t tend to exist anywhere other than Akihabara because they don’t need to. Akihabara and its culture is made possible by high-quality transit. (Taken by myself on Aug 4, 2015)

Japan is famous for not only its trains and what its trains have made possible, but also for its railway innovations and pioneers. The “Shinkansen” or “bullet train” was the world’s first high speed rail system between Tokyo and Osaka, which is now the busiest line in the country and is in the process of being replaced by a 600km/h maglev.

Big cities in Japan have extensive transit systems supported by trains that run skip-stop “express” and local services on the same track, carefully timed to the second, with coordinated transfers between those services to maximize passenger flow and minimize travel time.

Osaka's Nagahori-Tsurumi-Ryokuchi line was the first of numerous linear motor train lines.
Osaka’s Nagahori-Tsurumi-Ryokuchi line was the first of numerous linear motor train lines. During my Osaka trips I usually stayed with family adjacent to a station on this particular line.

In addition to pioneering the systems that have been popularized in other countries, Japanese planners are keen to pay attention to trends from abroad. When our SkyTrain system in Vancouver opened in 1986, it was one of the most innovative transit systems in the world. Many Japanese cities have borrowed the same “SkyTrain technology” we use, best characterized by the linear motor rail in the centre of the track, in high-capacity, big-city subway systems – taking advantage of the tighter radius curves and smaller tunnels to save trillions of Yen in public transit projects.

See also: List of Linear Induction Motor rapid transit systems

Japanese cities have used linear motor propulsion on nearly every subway line built since the 1990s – all of which I have visited during my 1 year stay. In many of the cities the trains are of a newer-generation than the ones used here in SkyTrain. Fukuoka’s Nanakuma Lines trains are not only well-built and modern, but surprisingly quiet going through tunnels.

The latest system, the “Tozai Line” in Sendai, will be opening this December, and will revitalize transit and tourism in a city which in my experience was comparatively lacklustre with its supporting buses.

All in all I enjoyed fulfilling my objectives, especially in transit research. Returning to Canada was a challenge in my realization that many of the Japanese lifestyle things I enjoyed cannot be found in Canada. There’s a lot to say about my time in Japan and how I viewed particular aspects in transit planning topics, but that’s a discussion I’ll be saving for later. I look forward to returning to active blogging on both Metro Vancouver and Japan topics.

Photo of myself at Osaka's Shinsekai district. Taken Jan 2015.
Photo of myself at Shinsekai, one of the many pedestrian-only districts in Osaka; in the background is the famous Tsutentaku Tower. Taken Jan 2015.

SkyTrain technology declared for 60km outer belt metro in Tokyo

SkyTrain technology declared for 60km outer belt metro in Tokyo

“SkyTrain technology” (linear motor propulsion, with automated operation) has been declared for a major investment in rail rapid transit in the outer boroughs of the city of Tokyo, Japan – the world’s largest metropolitan area with over 38 million people residing.

Map: Proposed "Metro 7" and "Eight Liner" rapid transit line circling outer Tokyo. The Tokyo Metropolitan Bureau of Transportation wants to use SkyTrain technology to reduce the project costs of this transit line.
Map: Proposed “Metro 7” and “Eight Liner” rapid transit line circling outer Tokyo, which will run under the city’s 7th and 8th Ring Roads. The Tokyo Metropolitan Bureau of Transportation wants to use SkyTrain technology to reduce the project costs of this transit line.

The proposed lines – initially two separate projects codenamed “Metro Seven” and “Eight Liner” – will be merged into a single project that is 59.7km long, with 42 stations.

There is an additional 13.7km extension to Tokyo’s Haneda Airport (bringing the total project length to a whooping 73.4km) under consideration. It has not been finalized as part of this proposal and is pending further study, likely given that other Haneda-oriented rail projects are currently being considered by other operators.

Case study

I was given a link to a study on the Itabashi ward website, which concluded that the use of SkyTrain technology would significantly save costs and improve the project business case, due to significant reductions in tunneling and land acquisition costs.

LINK: 平成25年 – 度区部周辺部環状公共交通に係る調査 – 概報告
English: 2013 Fiscal –Outer Ward Circumferential Public Transit Study – Summary Report

The Tokyo Metropolitan Bureau of Transportation (Toei) has proposed to build and operate the subway line with public funds, a rarity in a country where most major railways are built and operated by private companies.

Linear Motors Save Costs

The new metro line in Tokyo will use a new specification called “Smart Linear Metro“, which is identical to the 69km SkyTrain technology railway line proposed in Okinawa. Short, 12m long cars – similar to Vancouver’s Mark I SkyTrain vehicles – will enable a further reduction in tunnelling height, curve radius and land costs compared to 16m long “standard linear metro” cars already in use in Fukuoka, Yokohama, Kobe and other cities, which themselves allow for smaller tunnels than standard 20m rotary propulsion metro cars. To enable the high carrying capacity required for a Tokyo metro line, multiple-car, articluated units will be used.

Through the reduction in tunnelling and land acquisition costs – made possible by the key advantages of linear motor propulsion in lower floor heights and tighter curve radii – the use of SkyTrain technology is estimated to save taxpayers the equivalent of $300 million Canadian dollars.

Slides from the case study (tap to enlarge):

Trains will initially operate every 3 minutes during peak times on the higher-demand western segment, whereas a 5 minute frequency will be used on the eastern segment.

Popular in Japan

Japan is one of the world countries that has recognized the benefits of SkyTrain technology and pushes a widespread application of SkyTrain technology in every new railway project. There are now 9 lines in 6 cities running, under construction or under consideration. The new circumferential line will be the 9th such line in Japan, and the 20th such line in the world.

The Toei Oedo subway has been operating since 1991, and had one extension in 2001.
The Toei Oedo subway has been operating since 1991 and is one of the busiest Tokyo subway lines.

Toei has previously demonstrated SkyTrain technology successfully on the Toei Oedo Line, a major Tokyo subway line with a ridership of over 850,000 passengers daily. The Oedo Line has operated successfully for over 23 years. It’s no surprise that with this record, Toei would want to build another such line.

See also: List of Linear Induction Motor Rapid Transit Systems

New SkyTrain technology metro in Sendai, Japan opens 2015

New SkyTrain technology metro in Sendai, Japan opens 2015
sendai-map
Sendai Subway map showing the new Tozai Line (east-west line in blue)

A brand new rail rapid transit line in Sendai, Japan – which is using linear induction motor propulsion technology (“SkyTrain technology”) – is on track to open next year (2015), with final construction activities and train testing underway. The Tozai Line will be 14km long, and feature a mix of underground and elevated sections.

The use of SkyTrain technology is now confirmed by more than a concept photo, as the linear-motor rolling stock has arrived and pictures have surfaced showing linear motors on the subway track. These initial trains have passed their testing, keeping the line on-track to open exactly one year from now on December 6, 2015.

A new video featuring the rail transit project, showing the unveiling of the SkyTrain-tech rolling stock and construction progress, was recently updated to YouTube. As part of these unveilings, school children were allowed to be a part of the event, inspiring a future generation of transit riders.

New construction photos of the Sendai Subway’s Tozai Line has recently hit the internet. The photos below were posted on the official project Facebook page:

The Tozai Line was originally scheduled to open much earlier, but construction was delayed by the devastating 2011 Tohoku Earthquake and Tsunami, which heavily damaged much of the city. The new subway line will therefore be part of the revitalization movement for Sendai City.

Japan is one of the world countries that has recognized the benefits of SkyTrain technology and pushes a widespread application of SkyTrain technology in every new railway project. There are now 8 lines in 6 cities running, under construction or under consideration. Sendai Subway’s new Tozai Line will be the 7th such line in Japan, and the 18th such line in the world.

Sendai’s project is one of seven SkyTrain technology projects concurrently under construction around the world – the other projects are in Vancouver (Evergreen Line), Kuala Lumpur, Malaysia (Kelana Jaya Line extension), Guangzhou, China (Metro Line 4 & 6 extensions) and Beijing, China (Airport Express west and north extensions).

See also: List of Linear Induction Motor Rapid Transit Systems

A recent SkyTrain-tech project, announced for the island of Okinawa, Japan, will be the largest one-time SkyTrain technology project in the world at 69km long.

Okinawa, Japan declares SkyTrain technology for 69km urban and intercity railway

Okinawa, Japan declares SkyTrain technology for 69km urban and intercity railway

Okinawa Railway System - Urban elevated railway station concept

As you may recall (or not, since I have yet to actually discuss anything Japan-related on this blog!), I departed Metro Vancouver in September of this year to pursue a scholarship-supported abroad studies program in Kyushu, Japan. My studies include a transportation research component – and through this, I initially received word that Okinawa would use linear motor cars on its inaugural island railway – a.k.a. “SkyTrain technology”.

As of this week, a number of online articles in Japanese have now surfaced, revealing project details and effectively confirming SkyTrain technology for Okinawa’s first major rapid transit line.

News release: 知事選で高まる気運 リニアモーターを使った沖縄の「普通鉄道」建設構想とは (English: Election momentum growing: plan outlined for Okinawa’s linear motor railway)
Translated (Google): [LINK]

This means that linear motors and reaction rails (locally termed in Vancouver as “SkyTrain technology”) will be used to propel trains on the island. Japan is one of the world countries that has recognized the benefits of SkyTrain technology, with 7 lines running or already under construction in 6 cities. Okinawa’s railway will be the 8th such line in Japan, and the 19th such line in the world.

See also: List of Linear Induction Motor Rapid Transit Systems

The news release linked above emphasizes that every candidate for prefectural governor (there is an election coming up in Okinawa!) is supporting the proposed rapid transit line. This is because the line will be 30% cheaper to ride end-to-end than the current express bus service, due to efficiencies for the island’s transit operator. It is expected to cut travel time across the island in half, to 58 minutes from the current 1 hour and 45 minutes by rapid express bus.

There will be two primary segments. The 20km segment between Okinawa City and Naha Airport will feature an urban metro-style service. Trains will initially run every 5 minutes during peak hours, and every 12 minutes off-peak. The 49km segment between Okinawa City and Naga City will be the world’s first intercity railway using SkyTrain technology. Trains will initially arrive every 15 minutes during peak hours and every 20 minutes off-peak.

Map of proposed 69km SkyTrain-type railway in Okinawa
Map of Okinawa’s 69km SkyTrain technology railway

The line will initially use 4-car trains, with shorter 12m long cars – similar to Vancouver SkyTrain’s Mark I vehicles. They will be low-height vehicles capable of running through smaller tunnels.

最高速度は100km/hが目標とされており、長さ12mの車両の4両編成が考えられています。1両あたりの長さが約15.7mである長堀鶴見緑地線の車両が、4両編成で定員が380人なので、12m×4両では単純計算で290人程度の定員があることになります

English: Trains will have a maximum speed of 100km/h, and the government has considered using 12m length cars. For comparison, trains on Osaka’s Nagahori Tsurumi-Ryokuchi line are 15.7m long. Those trains carry 380 people, so we imply that Okinawa’s trains will carry 290 people between the 4 cars.

In order to navigate the island’s challenging terrain, 70% of the proposed line will be in a tunnel, which means the linear motor trains – which have lower train heights and require smaller tunnel diameters – will save the local government billions of dollars in tunneling costs. A standard rotary propulsion railway would have also likely required more tunnels, given linear motor vehicles are capable of handling steeper slopes at higher speeds, avoiding the need for tunnels and landscaping in certain segments.

Case study

With further searching, I was able to uncover a case study document that included conceptual art for the proposed rail line:

LINK: 新たな公共交通システム導入促進検討業務 – 報 告 書 – 概 要 版 – 沖 縄 県 (English: New public transit system promotional business case – Executive Summary – Okinawa Prefecture)

According to the study, the SkyTrain-type rapid transit line was initially compared on a level playing field with a variety of other transit options – including Tram-Train – a form of ground-level Light Rail Transit (LRT), and Bus Rapid Transit (BRT) – and won against these options, found to be the most worthwhile investment as it would generate the most travel time benefits for local citizens.

The linear motor transit systems examined in the study included the Bombardier ART (SkyTrain) systems in New York and Beijing.

About Okinawa

A map of Okinawa prefecture - from Wikimedia Commons, license CC-BY-SA
A map of Okinawa prefecture – from Wikimedia Commons, license CC-BY-SA

Okinawa, a well-populated and internationally well-known island south of the 4 main Japanese islands, is contrary to the rest of the country in that it has yet to see any serious developments in rail transit. There is a 12.8km monorail, called Yui Rail, in the main city (Naha), but that is it – the rest of the population must take buses or drive automobiles to travel longer distances.

The new railway will significantly improve transit travel times and create a new option to combat rising congestion levels on the Okinawa Expressway, a major toll road crossing the island. The entire railway will be 69km long, which will immediately make it the third longest SkyTrain-technology rail system in the world upon completion. Vancouver’s SkyTrain system (which will grow with the completion of the Evergreen Line) and Guangzhou, China (where three SkyTrain technology lines cover 100km of track) are the only longer systems.

Guangzhou opens world's newest SkyTrain technology line

Guangzhou opens world's newest SkyTrain technology line

I recently updated my List of Linear Induction Motor rapid transit systems [LINK] list to reflect the opening of Guangzhou Metro’s Line 6 – the world’s newest “SkyTrain technology” line, adding 25km of linear motor trackage to Guangzhou’s Metro system. The opening was met with a celebration last week.

SEE LINK: Guangzhou Metro Line 6 opened on December 28

SEE NEWS VIDEO (in Chinese):

The new line is expected to carry 700,000 passengers daily (about twice as much as our SkyTrain system carries) in the first month – making it one of the world’s busiest applications of SkyTrain technology on a rapid transit line. Guangzhou now has 100km of active linear motor rapid transit track – twice the length that Vancouver has on our SkyTrain system. Line 6 has both above-ground sections and tunnel sections; the latter in particular takes advantage of the low-height of linear motor cars, which enables smaller tunnels and cost savings.

Line 6 is very unique among the Guangzhou Metro Lines in that it has the most stations, the most passenger amenities, and offers the most frequent service of any Guangzhou Metro line. Basically, Guangzhou has chosen to build the most important subway line in the city with SkyTrain technology.

Guangzhou Metro ordered almost 200 linear motor rapid transit cars from Itochu and China’s CSR Sifang for Line 6. [SEE LINK]

A recent Vancouver Sun piece [LINK HERE] that I’m planning to send commentary on took note on the apparent obsolescence of “25-year-old SkyTrain technology”. The opening of this new line in Guangzhou, which is a high-capacity application, shows that this is far from true. In fact, there’s new research going on in India [LINK] at the Indian Institute of Technology (Banaras Hindu University) Varanasi to make it the fourth country to offer a “SkyTrain technology” product – after Canada, Japan and China.

List of Linear Induction Motor train lines

A concise list of all current and future rapid transit lines using linear induction motor propulsion technology. There are over 20 in-service or proposed systems across 15 cities/metro areas.

Less significant installations (i.e. non-urban rail) are not included. The list is sorted by system length.

Guangzhou Metro

Guangzhou Metro Line 5

System length: 260.3km (99.9km linear motor track) – Future 130km linear motor track
Linear propulsion rolling stock:
– CSR-Sifang/ITOCHU EMU, Bombardier BM-300 bogies (Line 4, 120 cars in 4-car service)
– CSR-Sifang/ITOCHU EMU, Bombardier BM-300 bogies (Line 5, 180 cars in 6-car service)
– CSR-Sifang/ITOCHU EMU, SDB-LIM bogies by CSR-Sifang (Line 5, 192 cars in 6-car service)
– CSR-Sifang /ITOCHU EMU, Bombardier FLEXX Metro 2000 bogies (Line 6, 196 cars in 4-car service)
Systems with LIM propulsion:
– Line 4 (2005) 43.7km / daily ridership: 300,070
– Line 5 (2009) 31.9km / daily ridership: 985,500
Line 6 (2013) 24.3km / daily ridership: 612,300
– Line 4 south ext. (opening 2016) 12.5km
Line 6 east ext. (opening 2016) 17.6km
Train control: Automated (SIEMENS system) with backup driver

Vancouver SkyTrain

2-car SkyTrain approaches Brentwood Station on the Millennium Line

System length: 68.6km (49km linear motor track) – Future 61km linear motor track
Linear propulsion rolling stock:
– ICTS Mark I (150 cars, 75 “married pairs”)
– Bombardier ART 200 (108 cars, 54 “married pairs”)
– Bombardier INNOVIA Metro 300 (28 cars, 7 4-car consists)
Systems with LIM propulsion:
Expo Line (1986) 28.9km
– Millennium Line (2002) 20.1km
Evergreen Extension (opens 2017) 11km
Train control: Fully automated (Thales SELTRAC)

Okinawa Island Railway

Okinawa Railway System - Urban elevated railway station concept

System length: 69km
Announced: November 2014
Linear propulsion rolling stock:
– FUTURE: 4-car consists
Train control: Unannounced automated system

Tokyo Metro and Toei Subway

Toei Oedo Subway

System length: 109.1km (40.7km linear motor track)
Linear propulsion rolling stock:
– Nippon Sharyo/Hitachi 12-000 series EMU (440 cars, 55 8-car consists)
– Kawasaki Heavy Industries 12-600 series EMU
Systems with LIM propulsion:
Toei Subway Ōedo Line (1991) 40.7km; daily ridership: 795,461
Metro 7/Eight Liner (FUTURE) 59.7km
Train control: Automated with backup driver

RapidKL Rail (Kuala Lumpur)

Kelana Jaya Line

System length: 64.6km (29km linear motor track) – Future 82km linear motor track
Linear propulsion rolling stock:
– Bombardier ART 200 (70 cars, 35 “married pairs”)
– Bombardier ART 200 order 2 (140 cars, 35 4-car consists)
– Bombardier INNOVIA Metro 300 (56 cars, 14 4-car consists)
Systems with LIM propulsion:
Kelana Jaya Line (1998) 29km (17km extension opening June 30, 2016)
“LRT3” Klang Valley Line (UNDER CONSTRUCTION; 2020) 36km
Train control: Fully automated (Thales SELTRAC)

Beijing Subway

Beijing Airport Express

System length: 456km (28.1km linear motor track)
Linear propulsion rolling stock:
– Bombardier/Changchun Railway Vehicles ART 200 (40 cars, 10 “Married pairs”)
Systems with LIM propulsion:
– Airport Express (2008) 28.1km
Train control: Automated with backup driver (Alstom CBTC)

Osaka Municipal Subway

Osaka Subway LIM rolling stock

System length: 129.9km (26.9km linear motor track)
Linear propulsion rolling stock:
– Kawasaki/Kinki Sharyo 70 series EMU
– Kawasaki/Kinki Sharyo 80 series EMU
Systems with LIM propulsion:
– Nagahori Tsurumi-ryokuchi Line (1990) 15km
– Imazatosuji Line (2006) 11.9km
Train control: Automated with backup driver

EverLine Rapid Transit System (Yongin, Korea)

Yongin EverLine

System length: 18.143km
Linear propulsion rolling stock:
– Bombardier ART 200 (30 cars)
Train control: Fully automated (Bombardier CityFLO 650)

Sendai Subway

Crews oversee a train on powered tracks with linear motor reaction rails installed.

System length: 28.7 km (14 km linear motor track)
Linear propulsion rolling stock:
– Kinki Sharyo 2000 series EMU (60 cars, 15 consists)
Systems with LIM propulsion:
Tozai Line (OPENED Dec 6, 2015) 13.9km

Yokohama Municipal Subway

Yokohama Subway LIM train

System length: 53.4km (13km linear motor track)
Linear propulsion rolling stock:
– Kawasaki 10000 series EMU
Lines with LIM Propulsion:
– Green Line (2008) 13km
Train control: Automated with backup driver

Fukuoka City Subway

Fukuoka Subway

System length: 29.8km (12km linear motor track)
Linear propulsion rolling stock:

– Hitachi 3000 series EMU (68 cars, 17 consists)
Systems with LIM Propulsion:
– Nanakuma Line (2005) 12km (1.6km extension to Hakata opening 2020)
Train control: Automated with attendant

AirTrain JFK (New York)

AirTrain JFK

System length: 13km
Linear propulsion rolling stock:
– Bombardier ART 200 (32 cars)
Systems with LIM Propulsion:
– Current AirTrain system (2002) 13km
Lower Manhattan – Jamaica/JFK Transportation Project via Long Island Rail Road track-sharing (FUTURE)
Train control: Fully automated (Thales SELTRAC)

Kobe Municipal Subway

Kobe Subway

System length: 40.4km (7.9km linear motor track)
Linear propulsion rolling stock:
– 5000 series EMU
Systems with LIM propulsion:
– Kaigan Line (2001) 7.9km
Train control: Automated with backup driver

Toronto Subway and RT

Scarborough RT

System length: 68.3km (6.4km linear motor track)
Linear propulsion rolling stock:
– ICTS Mark I (62 cars, 31 “married pairs”)
Systems with LIM Propulsion:
– Scarborough RT (1985) 6.4km
Train control: Driver-controlled with partial automation

Detroit People Mover

detroit20people20mover

System length: 4.7km
Linear propulsion rolling stock:
– ICTS Mark I (12 cars, 6 “married pairs”)
Train control: Fully automated (Thales SELTRAC)

From San Francisco to Surrey: More lessons on Light Rail and transit planning

From San Francisco to Surrey: More lessons on Light Rail and transit planning

The recent article on the Metro 604 website titled “From San Francisco to Surrey: Lessons on Light Rail prompted me to look into San Francisco’s transit situation a bit deeper, as could probably be expected from me as a person concerned on Surrey transit matters.

In San Francisco, California, this is what the transit system looks like:

The region-wide BART subway system has 8 stations within the city, while the commuter CalTrain service has 2 stops in San Francisco. The City’s Municipal Transportation Agency runs the MUNI bus system and Metro LRT within its borders. The MUNI Metro began operation in the 80′s, a modern light rail service replacing former streetcar routes. (Metro 604)

What Hillsdon (writer) wants us to take away from his write-up on the San Francisco transit system, and – particularly – the MUNI Metro LRT, is that:

The San Francisco experience teaches us that LRT is a very efficient transit solution, even for big cities, if we plan the system smarter and with greater flexibility.

And most of this is based on sight, with a few numbers thrown into the mix here and there.

Now, I’m not trying to point fingers at any of the conclusions or numbers in this article here. No one’s misleading anyone. Indeed, 32% of San Francisco residents commute around by transit to work (2011 CLIMATE ACTION STRATEGY for San Francisco’s Transportation System – page 10) – This is even slightly higher than the latest number I can find in Vancouver that describes transit trips within the city. Indeed, the flexibility of LRT in San Francisco has led it to be able to serve multiple purposes fairly well. I think that there’s a certain depth that might have been left out in his takeaway here, however – and that’s why I’m writing in response to this article. I think there are more lessons we can learn on Light Rail in San Francisco.

My nitpicks with the MUNI Metro? 4 topics below:

1. Active transportation in SF vs. Vancouver

San Francisco has a walk-score of 85, which is higher than Vancouver's 78
San Francisco has a walk-score of 85, which is higher than Vancouver’s 78

Let’s take San Francisco versus Vancouver. San Francisco is like Vancouver in several ways, from the climate to the hilly terrain down to the fact that like Vancouver, down to that is largely on a peninsula. For a somewhat similar city with a walk score of 85 – which by far outranks Vancouver’s 78 on the same system (which is the best in Canada) – it surprises me that San Francisco has a lower walking and cycling mode-share at 14.3% of trips.

When walking/cycling and transit are combined, the mode-share for active/sustainable trips beginning and ending in the City of San Francisco is 48.3%. This isn’t any better than the 2006 Vancouver numbers I usually quote (Vancouver Transportation Plan update, which reported a 52% mode-share for walking/cycling/transit trips, against a 48% auto mode-share for the same trip-type). So, I’m not seeing how San Francisco’s flexible use of modern Light Rail technology makes it any more (or less) remarkable. There’s not a lot about Light Rail that makes San Francisco’s transit outshine similar cities for any particular reason.

2. The Muni Metro stops at stop signs.

There are probably not a lot of other light rail transit systems around the world that have to do this, but it does happen on the MUNI Metro. The above is just one of several examples around the city. In this one, the lack of any controlled traffic priority means that a train has to wait until every pedestrian and cyclist crosses – a cause of scheduling delay throughout the system. In this case, the system is no better than a local bus.

The fact about mixed-traffic streetcars and light rail is that they must obey the rules of the road they share, which presents such a service to a lot of weaknesses and drawbacks. It seems like many of San Francisco’s Muni METRO lines (like the K and the N) travel on minor streets, and so they face stop signs and other local-street obstructions, to the nuisance of many commuters that might otherwise be choice riders. Light Rail’s flexibility is nice, but I don’t see how using its flexibility is necessarily “better planning”. With flexibility comes a cost; I see TransLink’s mandate that Light Rail be kept in a dedicated-right-of-way with traffic signal priority investments at all times as a very good thinking, because it ensures that transit is consistent, more reliable, and more competitive as a transportation and mobility option.

In case anyone forgot, with the amount of automobile use growth rate Surrey has been seeing, that is something Surrey is going to need.

3. Light Rail line needs more…. buses?

NX Judah Express

The San Francisco experience teaches us that LRT is a very efficient transit solution, even for big cities, if we plan the system smarter and with greater flexibility.

But, the existence of this bus route throws that claim somewhat out of whack. As a “very efficient transit solution”, Light Rail shouldn’t need to be complemented with an express bus service on the basis that the express bus service adds to the usability of that corridor – but, that’s exactly what’s happening, in at least one situation in San Francisco.

The MUNI route “NX Judah” is an oddity: it’s a peak-hour express standard-length bus service that supplements the local stop portion of the N Judah Light Rail line, then operates non-stop into downtown on mixed-traffic streets. It’s an interesting oddity for me, because while the local portion makes the same local-style stops as light rail, the express portion is actually trying to compete with its subway portion. The NX (detailed paper at CLICK HERE) was introduced in June 2011 as a six-month pilot experiment with express bus service supplements. According to transit schedules (N Judah / NX Judah Express), it runs every 7-8 minutes, alternating the N Judah Light Rail line on the outer end portion of it from 48th Avenue to 19th Avenue and providing a 3-4 minute corridor frequency west of 19th.

It was a resounding success. The NX was voted permanent in December 2011 in merit of its genuine benefits. Get this – MUNI is thinking of doing it with more of their LRT lines (“The apparent success of Muni’s NX-Judah express bus service could offer hope to riders on other crowded streetcar lines.”). There may be a future in which peak-hour express buses are complementing every LRT line in San Francisco.

Above is a video on the NX Judah, which compares it directly against the N Judah Light Rail Line. According to the racers’ stopwatches, which were set to time from trip-start to trip-finish, the NX doesn’t win the race here. At 29 minutes, in this video it was slightly slower than the N-Judah which manages a 26 minute commute to 19th and Judah. As can probably be expected with a mixed-traffic bus, results may vary.

However, other reports generally put the NX as faster than the N – alongside being less stressful to ride on, because the NX adds important capacity. The fact in itself that LRT-like travel time can come so close on a bus that, while express, runs with at-grade mixed-traffic, is pretty amazing.

Why not more trains?

The interesting thing that makes me wonder is why Light Rail service could not have simply been increased on the N Judah. It definitely could use that; the Judah Street corridor is one of the busiest transit corridors in the city, carrying some 38,000 daily transit boardings – though that is still less than Vancouver’s Broadway. The at-grade corridor seems to certainly be capable of handling 3-4 minute frequencies, because the express buses and light rail combined operate at those intervals when their schedules are put side-to-side.

A MUNI Metro train exits the downtown tunnel
A MUNI Metro train exits a tunnel, another one close behind. Photo: Flickr – CC-BY-NC-ND – Frank Chan

I initially suspected that it may be due to the fact that the inner, interlined segments in the MUNI subway are constrained by the very high train frequency of interlining 6 different lines together.

The Market Street Subway, where the six MUNI Metro light rail lines interline under Market Street into downtown San Francisco, is using the same Thales SELTRAC automatic train control system as the Vancouver SkyTrain in its underground portions. In fact, the MUNI Metro pioneered the application of SELTRAC outside of ART technology and linear-induction motor trains, which has since been applied to several other systems worldwide. This was put into service in 1998, after MUNI found that coupling trains from different lines where they converged in order to maintain headways that could be sustained safely by driver-manned operation was infeasible and unreliable. With automatic train control, the shorter trains from the individual lines can be run at the higher frequencies safely.

However, according to this report [LINK HERE], the Market Street Subway (where the 6 MUNI metro lines interline) is not operating at its capacity. It is currently running at a throughput of some 33-37 trains per hour, whereas the design capacity is 50 trains per hour, and the current throughput is lower than averages seen in 2003-2004 (where throughputs reached 40 trains per hour).

Cost

The NX Judah Express pilot implementation was estimated to have an annual cost of $1.8 million, for six months of service. This translates into an annual cost of some $3.6 million.

Whereas expanding N Judah service could have required the purchase of additional light rail vehicles at significant capital cost (whereas it appears that the NX is using repurposed reserve buses from 1993), implementing the NX Judah avoided (or had reduced) capital costs. With that reason, plus having the opportunity to provide a faster service as well as improve capacity, I can see why the NX service has a great business case. The NX provided the same mobility benefit as an N service increase; while, at the same time, it has not cost a lot.

Service disruptions: A Light Rail weakness
An LRT accident in Houston, Texas
An LRT accident in Houston, Texas

What happens when there’s an accident on an LRT line? Well, you could probably expect the obvious. Emergency vehicles are everywhere, and the scene is probably closed to public. But, most importantly, if you were riding transit that day, you would probably be forced off some stations down and forced to board a crowded shuttle bus, because that’s it for Light Rail service through that area.

It appears that another key reason for the addition of the NX over the increase of N service, is the controversial reliability of the N as a light rail transit line at surface-level. Apparently, the N is, for whatever reason, the most disruption-prone Muni Metro line; a reliability issue, which might be a collision or a derailment, happens on average of every 13 days.

I have no idea whether it’s a result of a more clumsy population along the corridor, but it is true that high risk of service disruptions for whatever reason can be a weakness of any Light Rail line. The NX, on the other hand, can simply reroute to avoid these disruptions, in the case of one ever occurring – making it a very valuable backup indeed.

It could be something as simple as a double-parked car, or a vehicle running an intersection where it thinks it has the right of way … Sometimes accidents happen simply from people being stupid.

What the N and NX remind me of

The whole issue of the N and the NX reminds me of this line I once read on the Human Transit website, written by Jarrett Walker, on what could happen if a streetcar line were built along 41st Avenue in Vancouver:

From Human Transit – Is Speed Obsolete?

Let’s imagine 41st Avenue 20 years from now in a Condonian future.  A frequent streetcar does what the buses used to do, but because it stops every 2-3 blocks, and therefore runs slowly, UBC students who need to go long distances across the city have screamed until the transit agency, TransLink, has put back a limited-stop or “B-Line” bus on the same street. (Over the 20 years, TransLink has continued to upgrade its B-Line bus product.  For example, drivers no longer do fare collection, so you can board and alight at any door, making for much faster service. Bus interiors and features are also identical to what you’d find on streetcars, just as they are in many European cities.)

Suddenly, people who’ve bought apartments on 41st Avenue, and paid extra for them because of the rails in the street, start noticing that fast, crowded buses are passing the streetcars.  They love the streetcars when they’re out for pleasure.  But people have jobs and families.  When they need to get to a meeting on which their career depends, or get home to their sick child, they’ll take the fast bus, and the streetcar’s appearance of offering mobility will be revealed for what it is, an appearance.

When a Light Rail/Streetcar service can become less useful as a transportation service than a mixed-traffic express bus that complements it, that’s not a good sign.

4. There’s better transit where people are driving the least.

Better transit mission district

This is from page 6 of the San Francisco Climate Action Strategy study I quoted earlier when I was looking at San Francisco transportation mode-shares. It’s a map.

It’s a map I haven’t seen for many other cities, and it’s a very good map that I think I would like to see more of. Here it is again, overlayed onto a Google Maps representation of San Francisco:

San Francisco Proof

I’ve always been adept at pointing out the many examples of the simple philosophy that “better transit wins better ridership”, and this is an absolutely great example of just that. The rainbow coloured ribbon on this map represents the Bay Area Rapid Transit system‘s 8 subway stations in San Francisco, which connect to the district that has the thinnest red line from downtown. If you zoom into this map (click the image), the slightly thicker and darker outlines represent the MUNI Metro network. While they also provide some limited connections to this area, I think the real highlight here is the BART.

BART provides a high-capacity, rapid, fully grade-separated service that can outpace other service options. It truly competes with superior modes of transportation in terms of convenience and reliability, and – as a result – it gets the popular vote.

Despite that the Mission District is also arguably one of the better places in San Francisco to live if you drive to work (it’s on the I-280 expressway, whereas of the other four districts measured, only one of them is along a limited-access expressway of any sort), fewer people drive from here to downtown than from any other area in San Francisco.

That’s right. Whereas the MUNI Metro is trying to compete against surface streets and losing, the BART is directly competing against an expressway and winning.

The takeaway

Sometimes when other cities are thought to have great examples for other cities, there are certain examples that are not exactly “what you see is what you get”. A great example is the perceived transit-oriented development success in Portland, OR – which might have been more a result of development subsidies from 1996-onwards, than the actual transit. Many of the biggest Light Rail fans in Surrey, including our City Council, are mesmerized by the presence of so much transit-oriented development near the MAX Light Rail system, only to not know about the subsidized reality of it.

It seems it happens to often: we look to other cities for vague examples thinking they could play into our future here, and in d0ing so some vague assumptions are made, some vague take-aways are gotten. It happened when Surrey City Council visited Portland, Oregon… it appears to have happened with Metro604 blogger Paul Hillsdon’s recent visit to San Francisco… and it could happen with a lot more transit gurus.

It’s not that all of this looking for inspiration from other cities holds no value whatsoever. I just think there is really no way that we can properly conclude planning mandates about our own transit system’s future just by looking at other cities and taking from the things we see. Sights might say one thing, but numbers might say another. And, on some occasions, perhaps that might be the other way around.

To end this, here’s a great timelapse compilation of San Francisco. Nevertheless, it’s a beautiful, rich, and diverse city indeed:

Japan: A sustainability shift example for the world

Japan: A sustainability shift example for the world
Photo credit: Wikimedia Commons
Photo credit: Wikimedia Commons

I love Japan, and I find that there is so much about it in its people’s culture, traditions and ways of thinking that the rest of the world should consider following, to solve problems and make progress in a world of uncertainty and in a world that needs some change.

The Japan I see to day is a great place that triumphs high fuel efficiency in vehicles, compactness and efficiency, and electrified rail lines as the primary, most affordable and most widely used form of transportation. I actually never knew, however, that it was on the verge of today’s China at one point in the past – encouraging middle-class citizens onto cars and creating wastelands of its natural environments, and creating pollution and illness in cities as a result. So, when I read this, it brought me great surprise to think that today’s Japan could not have been today’s Japan with the presence of leadership and a voice in the opposition parties, even as they never came to power.

From the International Herald Tribune Global Opinion’s Latitude:

Japan’s Pollution Diet

By ALEXANDRA HARNEY

TOKYO — Seeing Beijing wreathed in smog throughout the winter, it has been hard not to worry about the costs of China’s rapid economic growth. As Jon Stewart pointed out on The Daily Show: Can’t a country capable of lifting hundreds of millions of people out of poverty find a way to keep its own capital safe for habitation?

Japan rightly prides itself on blue skies, Prius taxis and mandatory recycling.

Five decades ago, people were asking similar questions about Japan. Even as the world marveled at the country’s 10 percent annual growth, alarm was growing over air pollution in several cities. Emissions of nitrogen dioxide, carbon monoxide and sulfur dioxide tripled during the 1960s. Japan became known for pollution-related illnesses: Yokkaichi asthma, Minamata disease (mercury poisoning) — both named after the cities where they first appeared — and cadmium poisoning, known as itai-itai, or “ouch-ouch,” because of the excruciating bone pain it caused.

Today, Japanese cities are among the world’s least polluted, according to the World Health Organization. Japan’s environmental record is hardly spotless, but the country rightly prides itself on blue skies, Prius taxis and mandatory recycling. What’s more, it managed to clean up without sacrificing growth by investing in pollution-control technologies and giving local governments leeway to tighten standards beyond national requirements.

It wasn’t easy. The Liberal Democratic Party, which governed Japan almost continuously from 1955 to 2009 and returned to power in December, wasn’t proactive in cleaning up the country’s air and water. That’s partly because until the mid-1990s Japan’s electoral system incited politicians to pander to the interests of business. With candidates from the same party required to also run against one another, most politicians stood little chance of distinguishing themselves on policy and so tried to secure votes by courting business and industry associations.

It was only when citizens’ movements, which grew out of protests against the 1960 U.S.-Japan Security Treaty and the Vietnam War, got the attention of opposition parties in the 1960s and early 1970s that the government was forced to confront pollution. “I saw the government and L.D.P. as responding just enough, just in time, when the pressure got strong enough that they could defuse the opposition and stay in power,” said Timothy George, a professor at the University of Rhode Island and the author of a book on Minamata disease.

The first result was a blizzard of laws — 14 passed at once — in what became known as the Pollution Diet of 1970. Air pollution fell dramatically in the years that followed.

[READ MORE – CLICK HERE]