Malaysia beats Vancouver to introducing next-gen SkyTrain vehicles

Malaysia’s busiest railway line is about to receive an injection of new trains. Bombardier and Prasarana launched the first next-generation SkyTrain technology vehicles (Innovia Metro 300) yesterday in Kuala Lumpur, beating Vancouver to the task.

IMG-20160118-WA0019

The next-generation, 4 car vehicles feature a next-generation design with larger windows. 56 cars were ordered, both to serve an extension of Malaysia’s busiest railway line (the Kelana Jaya Line) and increase its service frequency to beyond 3 minutes.

The new train features a humongous front window and side windows that go down to waist-height, which I can imagine would provide exquisite views from inside the vehicle.

Similar trains have already been received at SkyTrain OMC and are undergoing testing here in Vancouver right now, although an unveiling event has yet to be announced.

For Kuala Lumpur, the first train is to undergo a testing phase that starts now, and ends at around May of this year – at which time the new-generation train will enter service.

With two SkyTrain technology extensions now in the works in Kuala Lumpur (the current extension of the Kelana Jaya Line and an all new “LRT3” Klang Valley Line), Bombardier’s Innovia Metro 300 vehicles will be seeing a lot of service in Malaysia for years to come.

Capital costs of Canadian rail transit systems

Capital costs of Canadian rail transit systems

There’s been a lack of clarity when it comes to the big numbers that define the planning of transit systems in Canada. It’s particularly evident when transit technology becomes a matter of discussion.

Of course, millions of dollars are at stake. So there’s no doubt that when the cost estimate for a major project is higher by so much as a few million dollars, it’s the kind of thing that sends transit advocates scrambling to get attention and some people in the media practically screaming.

So I decided to take all the recent and upcoming Light Rail projects in Canada, research their costs and alignment details, and put them in a table for proper comparison. I put the data in a Google spreadsheet:

All projects were included regardless of technology. Alignment was divided by percentage and split into/measured in 7 categories: on-street, above-grade (i.e. elevated), below-grade (i.e. tunnel, open cut), disused R.O.W. (i.e. railway R.O.W., other empty lands), bored tunnel (the most expensive kind of tunnelling), shared-lane (on-street in mixed traffic like a streetcar), and the total at-grade percentage.

Trends

Since the transit planning complaints here in Vancouver always seem to be directed at grade-separation, I decided to focus on seeing if there was a cost trend regarding the amount of grade separation for the line.

Same data as above, but sorted by amount of grade-separation

What I found is that there is a trend that occurs when the chart data is pinpointed on a graph and assessed by percentage, but it’s very inconsistent and the projects are all over the map:

Percentage below or above-grade
Open to enlarge

Several projects end up below the average and several end up above it. As an example, there’s a difference in the four projects on this chart closest to the 100% mark. The highest mark is for the proposed Scarborough extension of Toronto’s Bloor-Danforth subway line, which will be fully underground. The lowest mark is from the estimate for a SkyTrain Expo Line extension in Surrey, which will be fully grade-separated but built in an elevated guideway as opposed to a tunnel.

Despite the use of grade-separation, many of the highest-cost projects are not fully grade-separated and feature many at-grade segments that can limit potential. Even projects with only about 20% grade-separation can come close to or even breach $200 million per km.

Below-grade segments

In order to account for the differences associated with much more expensive below-grade (tunnelled) segments, I took the data and assessed it by percentage below-grade and found a much steeper and more consistent trend-line:

Percentage below-grade
Open to enlarge

The amount of systems at the 100% mark has decreased from 4 to 3, and the trend-line now hits the middle of these three dots. The middle dot, closest to the line, is the current ongoing extension of Toronto’s Yonge-University Spadina subway line. The lowest dot is the cost estimate for the ‘Broadway Subway’ (the Millennium Line’s proposed extension down Broadway), which is below the trend-line but is built around a medium-capacity system unlike Toronto’s fully-fledged, high-capacity subway.

Still, there are some differences to account for in terms of alignment. At the 45-50% mark there are two projects that deviate both from the trend-line and from each other.

2012210-eglinton-lrt
The vast majority of the Eglinton Crosstown LRT will be placed in a large and expensive underground tunnel

The higher of these two marks, at $279 million per km, is the Eglinton Crosstown LRT being built in Toronto. The Crosstown was planned as an on-street LRT system, but the central portion will be placed in a 10km dual underground bored tunnel, which spans more than half of the final construction.  The lower of these two marks is actually our SkyTrain system’s Canada Line. The Canada Line is a fully grade-separated light metro and a slightly higher total percentage of it is below grade. However, only a much smaller portion of this is expensive bored tunnel – the rest was done as less expensive cut-and-cover. Therefore, it manages to be less expensive despite the full grade-separation.

Bored tunnels

To account for that difference I created one more plot excluding everything but projects with bored tunnel segments. The plot line managed to stay the almost same, and the relationship between high capital costs and tunnels is thus made clear:

Percentage bored
Open to enlarge

Since only 13% of the Canada Line was built in a bored tunnel, it is now to the left of where it was in the last chart and sitting very close to the trend-line (the Eglinton Crosstown is also closer to the trend-line). Meanwhile, our Evergreen Line SkyTrain extension, which encountered challenging soils with its single tunnel bore, is right on the trend-line when set amongst the other systems.

Canada can’t be compared to Europe

The Tyee has probably been one of the most prominent to sound the cost-comparison alarm when they published a 2012 article titled, “Why Is TransLink’s Price for Light Rail Triple What Other Cities Pay?”

This article surmised that our Light Rail cost estimates are triple what they should be, based on cost estimates being about one-third as much in European and American cities. (And it was, of course, brought up as a way of hurling tomatoes at the idea of a Broadway Subway line – which is still a great idea for a number of reasons).

14532657623_ab73087347
Nice try, Tyee – but the Hiawatha Blue Line is largely off-street and incomparable to Broadway!

Interestingly, of all the American cities that could’ve been chosen in the comparison, it was Minneapolis and its Hiawatha Blue Line. This comparison is invalid as over 80% of the line is placed in either disused R.O.W. or tunnel, with only 20% of it being on-street. All of the other examples are from cities in Europe.

Regardless of whether you believe these numbers or not, the reality is that transit projects and their costs are more complicated than being able to be broken down into a simple cost-per-km value that can apply nationwide, across nations, or across transit projects. There are differences in labour laws, work schedule expectations, material costs, acquisition costs, logistics costs, varying land values, differences in local terrain and differences in economy. All of these need to be accounted for and thus it can’t be assumed that a transit project that cost a certain amount in Europe (or any other country, really) could be replicated in Canada for a similar cost.

Here in Vancouver, for example, any big rapid transit projects are likely to cost more than anywhere else in Canada simply because the higher cost of land would likely significantly raise the costs of project elements such as the operations & maintenance centre (OMC).

Despite this, at the end of the day, both the Broadway Subway and the LRT proposals were consistent with the trendlines across Canadian rapid transit systems.

On-street LRTs

To further address the point raised by The Tyee, I compiled one more chart between the predominantly on-street LRT systems:

Percentage on-street LRTs
Open to enlarge

From the wide spectrum in cost of what would otherwise be similar at-grade, on-street LRTs, it may appear that The Tyee would have a point. Even this can be explained, however. The two lowest-cost systems on this chart are Kitchener-Waterloo’s ION rapid transit and the proposed Victoria LRT system. They also happen to have the highest percentages (44% and 31% respectively) on a disused right-of-way (i.e. beside a railway), which is the least expensive place to build any transit because there’s no utility removal, property acquisition or street-scaping work adding to the cost.

highway_401_at_hurontario_street_9192877703
With a right-of-way this wide, the Hurontario LRT is not going to need a lot of property acquisition.

In the middle are the Mississauga and Hamilton systems, which are slightly lower than the big-city systems in Greater Vancouver and Greater Toronto (they are also among the 3 systems with occasional mixed-traffic rights-of-way), which seems just right to me. The Mississauga system (Hurontario LRT), in particular, is being built on a wide roadway that in most places still has significant allocations on either side where the roadway can be expanded if necessary (in other words, there’s almost no property acquisition).

The cost for a Broadway LRT system is certainly on the high-end of the spectrum. This makes sense as a Broadway system would need to offer the highest capacity of all of these systems and would face street-scaping challenges with the need to stay within property lines (though this won’t stop property acquisitions from being necessary at station locations). There’s also the uncertainty around an OMC, which would have likely had to be built underground and/or expensively due to the lack of lands along Broadway and high land costs in Vancouver.

Conclusion

In the end, the amount of bored tunnel has a somewhat linear relation with project costs – but grade-separation altogether does not. This doesn’t mean we should avoid building systems with bored tunnel segments from end-to-end (at the end of the day, whether to go that far or not should come down to detailed evaluations of each corridor and transportation needs), but what I do hope to achieve with this article is to facilitate an improvement in the discussion of rapid transit projects (Especially capital costs, since it seems to be the only thing people want to talk about when thinking of rapid transit projects – I, of course, completely disagree).

It’s time to stop thinking that we can build paradise if we replicate the results of other countries, at the costs those other countries experience – it’s impossible. Let’s build transit systems that are adapted to the way our cities work, so that we are sure to be rewarded with positive outcomes.

Sendai celebrates SkyTrain technology with opening of new Tozai Line

Sendai celebrates SkyTrain technology with opening of new Tozai Line

sendai-map
Sendai Subway map showing the new Tozai Line (east-west line in blue)

The sun is rising over a quiet city, where the lights inside 13 new rapid transit stations turn on and the first station staff make their way down the relatively unused escalators to prepare to open the platforms for the first wave of customers.

The familiar hum of a linear induction motor system populates the station as the first of 15 four-car trains rolls in from the maintenance yard, ready to board passengers for the first service of the day.

If you think I’m describing an event in Vancouver, you would be wrong because I am describing what’s happening right now in a major Japanese city, one that decided to build a brand new rapid transit line with the same SkyTrain technology developed in Canada and pioneered here in Vancouver.

See: New subway line opens in disaster-hit Sendai – The Japan Times

Sendai, Japan is the city that was hit hard during the March 11, 2011 Tohoku earthquake and tsunami. The completion of the new Tozai Line, a 14km rapid transit subway with both underground and elevated stations, has turned the page for the city, marking its vibrance and prosperity as it progresses in its recovery from the devastation of 4 years ago.

I went back to Sendai for a business trip, and it also happened to be the day the Tozai line opened to the public. It was crazy! The city and its people are treating it like a big event!
-Ryukyurhymer from Skyscrapercity (LINK)

This slideshow requires JavaScript.

Videos and photos of the launch celebrations show thousands of people making use of the new system, and celebrations ranging from idol girl groups performing on the station platforms, local sports team mascots out to celebrate, men in samurai outfits, traditional dance performances on board the trains, and picnics at the park beside the train’s visible elevated section. It is a lively hustle and bustle and the mood appears to be as festive as when I visited Sendai just 4 months ago to attend the city’s most famous Tanabata Festival, as part of my 1-year Japan studies journey. It is arguably the biggest occurrence in the city since this August and the biggest revolution for the city since the first steps in recovery were made after 2011.

Pictures from TransLink of mockup Mark III Skytrain vehicle
SkyTrain technology was developed in Canada and pioneered right here in Vancouver.

Since the first km of demonstration track opened in early 1983 here in Vancouver, SkyTrain technology has made its way around the world with just over 20 systems complete or being proposed in 15 cities worldwide. We have reinvested in it and expanded our system several times, yet we’ve been overtaken by a certain Guangzhou, China that has made a monstrous investment in this technology with over 99km of track – reaching 130km by next year.

Sendai’s will to revitalize their city with the help of a technology pioneered here in Vancouver, Canada should be seen as a wonderful treat and a mark of our contributions to this technology’s progress, and a reminder of the big impacts we can make with choices that we would otherwise deem irrelevant. Sendai’s choice of SkyTrain technology will help the city fast-track its ongoing recovery from the events of 4 years ago.

The line will serve 80,000 riders a day next year, with an additional 3% more estimated to come each year and grow the system’s ridership. According to the schedule on the city’s website, trains will run every 3-4 minutes during peak hours and no less frequently than every 7.5 minutes at off-peak times and weekends – an excellent service standard for a medium-sized city of 1 million people.

This slideshow requires JavaScript.

The new line is already enabling new transit-oriented development nodes in the city, maximizing the line’s potential and giving a nod to the transit-oriented development practices that Greater Vancouver pioneered for every city in North America.

In an area around Arai Station, work to establish a new community of nearly 20,000 people is progressing. Public apartments have been built for those affected by the tsunami, with people moving there from areas closer to the Pacific coast as part of a collective relocation program. (The Japan Times)

We should celebrate a technology that’s made an impact around the world

As a result of the practical research for three years from Fiscal 1985, we confirmed that low-cost subway “Linear Metro” that has been developed as a public transport is suitable for regional hub city as a semi-main metropolitan line or branch line. For this reason, the Japan Subway Association established the “Linear Metro Promotion Headquarters” within the association in October 1988.

ml98pr_fig2
Comparison of conventional subways and linear motor subways. From Osaka Municipal Transportation Bureau’s info page on LIM technology

Japanese researchers started studying linear induction motors (LIMs) as train propulsion in 1985. After Osaka built Japan’s first LIM line (the Nagahori Tsurumi-Ryokuchi line), it was found that the city had saved approximately 20% in construction costs. This is one of the key advantages that come with LIMs – the less-complicated motors enable trains to have lower platform heights, which  means tunnels can be significantly smaller and less costly without impacting the quality of service. There is no doubt that with the majority of Sendai’s new subway line tunneled, millions in cost savings were found with the use of SkyTrain technology.

This same advantage was directly to blame for the use of an existing railway tunnel on our Expo Line SkyTrain downtown, a choice that saved us hundreds of millions of dollars as a traditional light rail system would have required new and larger tunnels to be dug under our downtown core.

“The new line is a symbol of development for the disaster-hit Arai district. I hope the Tozai Line will play a major role in leading the city.”
– Emiko Okuyama, Mayor of Sendai (The Japan Times)

See also: List of Linear induction motor rapid transit systems

Sendai’s system brings the amount of in-service SkyTrain technology systems from 17 to 18. 14 cities/areas are currently using SkyTrain technology, and a 15th (Okinawa Island, also in Japan) has declared its use for a major future transit investment.

I am pleased to hear about and report on this successful launch, and I encourage all of us in Vancouver to cheer this Japanese city and its people in celebrating a brand new era of progress and motion.

Local news report (Japanese)

Watch trains arrive and depart at Sendai Central Station

Fukuoka to extend SkyTrain subway

Fukuoka to extend SkyTrain subway

Featured above: The Nanakuma Line in Fukuoka uses LIM propulsion (SkyTrain technology)

Above video: (Japanese) report about the Nanakuma Line extension project in the City of Fukuoka

Japanese cities are leading the way in their investment in the same linear motor technology systems powering the Vancouver SkyTrain system.

A few weeks ago, the City of Fukuoka confirmed a major 1.6km extension of its Nanakuma Subway line, from its present terminus in Tenjin-Minami to the city’s intercity train terminal at Hakata Station. This extension will create a new extension from the south end of the Tenjin city centre area to Hakata Station, while passing underneath Canal City – a major mall in the city and Japan’s largest private development complex.

mainvisual02
Map of the Nanakuma Line extension on the Fukuoka city website

This extension will make the Nanakuma Line more accessible to intercity travellers arriving via the bullet train (Shinkansen) from Osaka, Kagoshima or Nagasaki at Hakata Station, and it will also improve transfers to the city’s Airport Line subway and connections to the airport, by allowing travellers to bypass the most congested section of the airport line at Nakasu-Kawabata.

Construction for this extension is already ongoing and is visible on Fukuoka’s city streets. The new extension is expected to be complete by 2020.

This slideshow requires JavaScript.

I am pleased to hear about this extension as Fukuoka is the largest city in Kyushu, the southwestern area of Japan where I lived in during my past year. In my time there I made frequent visits to the city, including frequent use of its subway lines. The Nanakuma Line was the first “SkyTrain technology” subway I visited, right after I arrived last September.

Sendai opening brand new SkyTrain technology line next week

Next week, Sendai will be proceeding with the opening of its east-west Tozai Line – a brand new subway system constructed with linear motor (SkyTrain) technology.

The City of Sendai has already hosted a test ride, attended by over 6000 would-be passengers of the new rapid transit line.

Above video: (Japanese) news report showing test rides last week on the Sendai Subway Tozai Line

The test rides were successful and the line is on track to open for revenue service in exactly 1 week on December 6, 2015.

Recommended reads:

We can learn from Japan on transit delays/incidents

We can learn from Japan on transit delays/incidents

Video shows that in Japan, even the train evacuations are orderly 【RocketNews24】

As reliable as Japan’s public transportation system is, with so many trains running from morning to night, eventually some sort of problem is going to occur. Passengers heading to work or school in central Kobe had their commute interrupted at approximately 8 a.m. on November 16, when it was discovered that an overhead line had snapped on the Japan Railways (JR) Kobe Line between Kobe and Motomachi Stations.

Seeing that the repairs would take some time to complete, some 5,000 passengers were instructed to leave the carriages, which were stopped in an empty stretch of the tracks, and walk to the nearest station, as directed by JR staff who were on the scene.

Even in Japan, which is known for having one of the world’s supposedly most “punctual” train systems, delays and incidents can occur. Last week in Kobe, this was the scene on the city’s main JR rapid transit line after an incident with an overhead power-line was found, requiring a full shut-down of the system in Kobe and service disruptions throughout the 194km-long intercity rapid transit line.

If this sounds familiar, that’s because it does resemble some of the incidents that have plagued our SkyTrain system here in Metro Vancouver over the past few years.

I’m also sure many of you are aware of what happened to the SkyTrain yesterday (November 24th), when it was shut down in downtown due to a “power failure” incident that turned out to be a ‘one-in-a-million’ misplaced replacement rail part that moved on the tracks and struck/damaged the power shoe of an oncoming train.

Map of JR train lines in the Osaka/Kansai area. The blue line going west-east from Himeji to Maibara through Kobe, Osaka and Kyoto was the line affected.
[OPEN to enlarge] Map of JR train lines in the Osaka/Kansai area. The blue line from Himeji in the west to Maibara in the east was the line affected.
I was in Japan last week and happened to actually experience the Kobe incident in the video at the top of this post, although I wasn’t in Kobe when it occurred. Instead, I felt the ripple effects over 140km away at Maibara Station, on the eastern end of the line, as I transferred from another train from Nagoya intending to ride this particular line en route to Kyoto.

The featured photo at the very top of this post is my own picture of the “trains delayed” notice display I ran into when I arrived at Maibara Station. I could feel my stomach churn even more when I checked the departure time-boards on the station platform itself, which showed that westbound express trains had been completely cancelled.

This left me and perhaps several hundred other passengers waiting on the platform before having to crowd onto a smaller local train, which we would ride until another station down the line (Yasu) where express trains would re-commence. The incident was uncomfortable, cost me nearly 90 minutes in delay and had a major effect on my plans for the day.

This is, incidentally, longer than the approx. 60 minute delay I experienced yesterday when I was caught in yesterday’s SkyTrain delay. I started commuting from Surrey to the Main St. Station area to fulfill an errand, right after delays began at around 2:50PM. I went through stopped trains, crowdedness of the trains and crowded-ness again when I boarded a replacement shuttle bus at Commercial-Broadway Station.

SkyTrain has been through numerous shutdowns in the past year, which many have attributed to be an issue of system reliability. In actuality, many of them the result of the lack of an auto-restart system that was neglected by BC Transit in the 1990s; some of them were genuinely due to human error; and some of them just couldn’t be prevented no matter what anyone did.

Regardless of the cause, we don’t seem to handle these very well. Doors have been broken open, resulting in people walking on the tracks unauthorized and causing further delays as track power needs to be shut down. People tend to respond loudly and angrily on social media, not waiting for the investigation to blame TransLink on whatever happens.

There’s a lot that we can learn from the Japanese when incidents like these happen. In Japan, trains are so critical to the functions of life, responsible for moving millions of people every day in a very dense country. Punctuality is considered very important, and so train operators concentrate on providing the best service possible when everything is working. It’s important to understand that things can sometimes not work – and when that happens, instructions have to be followed and anger has to be calmed. Which is why the train evacuations showcased in the video were so smooth and orderly.

This train line didn't have emergency walkways at door-level like our SkyTrain system - so passengers had to climb down ladders to get onto the track.
This train line didn’t have emergency walkways at door-level like our SkyTrain system – so passengers had to climb down ladders to get onto the track.

The most important thing to remember is that at the end of the day, these incidents don’t actually happen that often – SkyTrain has maintained a statistical reliability that tops transit systems in other cities. I pride myself over having kept myself calm throughout yesterday, and hope that other passengers who were able to do the same do so as well.

See also: Vancouverites are Spoiled with SkyTrain – Vancity Buzz

We can’t let these incidents affect the way we think about transit and play our part in shaping major transit decisions, like the recent NO vote on the regional transit referendum. It’s easy to lose sight of the facts when you’re inconvenienced and made bitter, but at the end of the day, in doing you really aren’t helping anyone.

I’m noticing many commuters on Twitter talking about how reluctant they were to take SkyTrain today. If I had let the incident from last week stop me from using the JR train line again out of fear, I wouldn’t have been able to resume with my plans to visit Himeji Castle and take these gorgeous pictures….

This slideshow requires JavaScript.

Lastly, here’s a bit from the Rocketnews article that perhaps TransLink could take from for next time…

…we think what really sealed the deal is the Japan Railways representative who shows up on the platform at the video’s 0:27 mark, ready to apologize to those who were inconvenienced and hook them up with bottles of tea, which he opens for each person who walks by. Because hey, on the occasions when you can’t be punctual, you may as well be classy.

Man tea 1

'Everline' SkyTrain transit system transforms Yongin City, Korea

'Everline' SkyTrain transit system transforms Yongin City, Korea

^ New Yongin Everline promotional video (in Korean)

The 18km “Everline” rapid transit system in Yongin (near Seoul), South Korea, which utilizes the same “SkyTrain technology” trains used here in Vancouver, has celebrated its two year anniversary this past week – and along with that, city residents and officials have also been celebrating its positive effect in transforming the city of Yongin.

A new report published in English by the Korea Herald reports that the Everline is transforming Yongin City – helping to foster business growth and attract high-tech industries, encourage more people to adopt transit-oriented lifestyles and reduce congestion. The Everline is now meeting the ridership projection that was initially made in 2011.

Yongin, once regarded as a commuter town in Gyeonggi Province, is now developing into a business-centered metropolis equipped with a growth engine as it amasses infrastructure befitting a city of more than 1 million residents.

The development has been underway since Mayor Jung Chan-min took office nine months ago. The city is setting up several industrial complex centers including the Yongin Techno Valley currently under construction, and the once-dormant light rail ‘Everline’ is currently used by over 30,000 passengers daily.

[Yongin growing into business-centered city – The Korea Herald]

The Everline story: dismal beginnings

The Everline opened for service in 2013, after being unable to open in 2011 (the line had been fully constructed and in a ready-to-open state since before even then) and again in 2012, due to refusal from the City over issues with both construction and projected ridership (see INTERVIEW with Joongang Daily – Feb 2011). The delay was seen negatively by the Yongin Rapid Transit Company (YRTC), the line’s operator, which was awarded nearly $500 million in damages through the International Court of Arbitration, after suing Yongin City for delaying the opening of the line.

These issues, among others, gave the Everline a very dismal reputation among city residents – and a reportedly low ridership when the line was opened did not make things any better. One group of vocal residents, who were understandably not too happy about the delays and lawsuit, at one point called for the Everline to be dismantled altogether.

Yongin Everline Train
Although the Everline service operates at an exceptional frequency, trains operate with a single car and that has created even more dissatisfaction among critics. Photo from Wikimedia Commons, CC-BY-SA Minseong Kim

But, according to The Korea Herald’s report, it turned out that one of the key problems with the Everline during its initial year of operation was a total lack of fare integration with surrounding transit systems. There was also no direct station-to-station connection or fare integration between the Everline’s terminus station in Giheung, and the nearby Giheung Station of the Bundang Line subway connecting to Seoul City Centre.

Both of these issues were fixed by late September last year, causing ridership levels on the Everline to increase by triple by this April, a period of just over 6 months.

Everline, the major light rail line of Yongin, opened two years ago, but it had been long regarded as a public nuisance with fewer than 10,000 users per day. After implementing the Metropolitan Unity Fare system in September last year, the number of passengers drastically increased. After one month, over 20,000 passengers on average used the light rail daily, and the number reached an average of 30,000 passengers last month.

The ridership is now close to meeting the latest daily ridership forecast of 32000, by the Gyeonggi Research Institute in 2011; and at this rate will surpass it some time this year.

This is very significant for Yongin, because one of the things that pressured the City into refusing to open the line in 2011 was the lack of confidence that it would meet this projection – the city’s internal projections of 10,000 daily riders disagreed with the Gyeonggi Research Institute. The Mayor stated the City did not want to open the line, expressing concern about the increased operating subsidy and a loss of revenue due to lower ridership.

When the line finally opened in 2013, Korean transit blog Kojects noted that the city’s projection had turned out to be true (see No Passengers on Yongin Everline – June 2013) – with the line recording just under 10,000 passengers daily. However, the fare integration with surrounding transit had not yet been implemented, despite its anticipation during previous attempts to open in 2012. Now that it has been implemented, the ridership level is now triple the city’s initial projections and nearly matches the projections set by the Gyeonggi Research Institute; it will handily surpass those projections within this year.

The Everline costs about $26 million to operate yearly, which is a relatively low cost made possible by driver-less train operation. As a result, it is now close to half-way to reaching its total “break-even” point when daily ridership hits 75000 (This is according to a Korean newspaper – [see here]). At 75000, fare revenues will 100% cover all operating costs, completely eliminating the operating expense for city taxpayers.

By comparison, here in Vancouver our SkyTrain lines have hit their break-even points and are covering their operating costs through fare revenue. The newest Canada Line, opened 2009 and using Korean-built trains from Rotem in two-car sets, hit its break-even point of 100,000 daily riders in 2011 (against projections of hitting this in 2013). However, our SkyTrain lines have opened on-time and on-budget. The Canada Line opened several months early, and was bolstered further by the 2010 Winter Olympics in Vancouver.

Everline as an asset to Yongin City

Map of the Yongin Everline
Map of the Yongin Everline

On top of the recent fare integration, new efforts – including the promo video at the top of this post – have been made to promote the viability of the line to residents, many of them still bitter from having to wait years to ride and sitting through the handover of a major chunk of the city treasury.

It’s taken some time, but shuttle buses from the four main universities that are connected by the Everline, which previously were connecting to major transit centres, are now connecting to the Everline (According to previously linked report in Korean – [see link]), helping the universities reduce their transport costs. Activity on the line is increasing and there are now buskers performing at many of the line’s busier stations, fostering a lively urban atmosphere.

New developments on the line aim to take advantage of the Everline’s convenience. One multiple high-rise proposal, at the Everline’s junction with the Bundang Subway Line at Giheung Station, is expected to be a massive contribution to the line’s ridership (see report in Korean – [link])

The new Mayor of Yongin, who was elected to office 9 months ago, has supported the Everline and demonstrated its versatility by making the Everline a part of his own commute (the Everline has a station in front of Yongin City Hall), and has organized a citizens committee to make the best of the line now that it has been built. He has also used the Everline’s example to push for further rail investment in Yongin City – which may include further extensions of the Everline itself.

Everline trains consist of a single car, which is the same length as our Mark II cars but as wide as our Canada Line vehicles at 3.2m wide. The trains have been termed by some media and riders as “cute”, but derided by critics as being “more like buses”.

Nevertheless, trains run every 4 minutes during weekday peak periods, and no less frequently than every 6 minutes except during early mornings and late nights on weekdays and weekends. This is a higher quality service than many grade-level, driver-operated Light Rail systems. In addition, all stations are ready to accommodate 2-car trains.

Significance to Vancouver

Although the Everline operates an exceptional frequency, the fact that trains operate a single car has created additional dissatisfaction among critics.
You betcha that Everline train looked just a little too familiar. Look, linear motor rails!

The Everline has often caught the attention of transit observers in Metro Vancouver, noting the identical ‘SkyTrain technology’ from Bombardier being used on the new line.

Critics of SkyTrain expansion in our region were the first to jump on the Everline story, framing its issues as reasons that we should avoid expanding our SkyTrain system. I find it particularly ironic that it is the same kind of interference from municipal politicians – which resulted in the Everline’s shortfall as a Yongin City asset – that has been desired by critics referencing that shortfall as a way of stopping SkyTrain expansion.

But it should be clear that none of the problems with the Everline were the result of ‘SkyTrain technology’, or Bombardier. In his interview with Joongang Daily, the Mayor of the City in 2011 cited two reasons why the City was refusing to open the project: issues with ridership (which we now know to have been lack of integration), and issues with construction resulting in “noise and safety concerns”. These apparent construction issues were related to the elevated guideway structure and so a result of the construction contractor, not Bombardier or anything regarding ‘SkyTrain technology’.

Regardless of everything, the Everline has proved to be a successful transit system – and every day it carries more passengers and transforms life for more and more citizens in Yongin, it is turning around its dismal beginning of being a “failure” or a “white elephant” and becoming a true rapid transit icon in Korea.

I believe the Everline Story has two main lessons for all of us here in Metro Vancouver:

  1. “P3” transit projects must be carefully planned and considered. The Yongin Everline is essentially akin to a “what if the Canada Line P3 failed” scenario, with ridership not meeting projections – except the disaster was also kind of pre-empted as a result of fear of failure from the City’s politicians, the resulting delays in opening, and the lack of fare integration. The Canada Line did not fail because it was built on a well-demonstrated transit corridor (the previous 98 B-Line rapid bus was demand proof) and kept a promise to riders by mandating travel time improvements – the designer was actually required to orient its proposal around a set travel time value, and the Canada Line’s reliability in meeting that travel time was subsequently found to be the line’s #1 most-liked aspect in rider surveys. The City of Surrey should particularly be paying attention because it wants to use a P3 model on its proposed grade-level Light Rail system, which is more vulnerable to ridership not meeting projections than a grade-separated SkyTrain extension.
  2. The value of integrating transit fare systems. Major metro areas in North America like the San Francisco Bay Area are facing serious challenges dealing with multiple transit agencies, including major ridership losses due to the lack of integrated fares. We don’t have this problem in Metro Vancouver because of our system of having a single transit operator throughout history. As a result, TransLink is one of North America’s most efficient transit systems.

Malaysia confirms SkyTrain technology for 36km Klang Valley line

Malaysia confirms SkyTrain technology for 36km Klang Valley line

It’s official: SkyTrain technology has been confirmed in Malaysia for a brand new, 36km rapid transit line to be built on the outskirts of Kuala Lumpur. The new ‘Klang Valley LRT Line 3’ will begin construction at the beginning of next year, and is expected to open for revenue service in the year 2020. An alignment study has been completed, and the project owner has distributed the construction tenders just last week for the new line so that the detailed design process may proceed.

Featured: Kuala Lumpur's next-generation Mark III train
Featured: Kuala Lumpur’s next-generation Mark III train

The Klang Valley line will intersect with the existing Kelana Jaya Line on Kuala Lumpur’s RapidKL network. The Kelana Jaya Line was built on the same propulsion and driver-less technology used on the SkyTrain system in Metro Vancouver, and uses the same Mark II vehicles manufactured by Bombardier. In addition to the Klang Valley Line, RapidKL is also currently in the process of completing a 17km extension of the Kelana Jaya Line, which will open in 2016. Here’s a short description of the new line from RapidKL:

Designed to ease traffic congestion in the Klang Valley and connected to the current LRT Kelana Jaya Line and the upcoming MRT Line 1 Sungai Buloh–Kajang, the proposed alignment of the LRT3 is currently being finalised by the Land Public Transport Commission. LRT3 aims to connect Bandar Utama to Klang, covering 36km, and will comprise 25 new stations.

Daryl’s take reported on the Klang Valley Line last year, then known as the “Shah Alam Line” (SEE: Previous article) when its potential use of SkyTrain technology was merely a possibility. This has now been confirmed in the alignment studies.

VIEW NOW: Klang Valley LRT 3 Environmental Assessment [PDF]

The environmental impact assessment for the Klang Valley/LRT3 project, which was uploaded by observers on the SkyscraperCity forum, mentions that the vehicles on the proposed transit line will be the “similar to those used on the Kelana Jaya line” – indicating that they will be the exact same vehicles or a close variant, using the same linear motor propulsion technology, and driver-less operation.

The Light Rail Vehicle train, similar to those used in the Kelana Jaya LRT Line, will be used. The train can be configured to a 2, 4 or 6 car-vehicle train. The dimension of each car is 20 m long x 2.65 m wide x 3.44 m high. Each car will have a minimum of 36 seats and 6 passenger doors (3 doors on each side). It will be full Automatic Train Operation driverless system.

While the assessment did not specifically mention the use of linear motor propulsion, it did specify a vehicle height of 3.44m, matching the vehicle height of the Mark II trains on the Kelana Jaya line and thereby requiring the use of linear motor “SkyTrain technology”, as the height would not permit standard rotary motor propulsion due to its requirement of a higher platform. As a comparison, the regional network’s Ampang Line trains, using standard rotary-motor propulsion, have a height of about 3.9m. The assessment also specified a 5% maximum grade, requiring linear motor trains for safe operation. For rapid transit rail lines, standard rotary propulsion trains are generally limited to 3% maximum grades in order to accommodate for push-pull operations in the event of train stoppages and other emergencies.

The initial operation will use 54 2-car trains, at a 2-minute headway throughout the day. There will be an end-to-end time of 51 minutes on a running speed of 80 km/h, for an average speed of 42 km/h. Here are some additional highlights of the new Klang Valley line:

Largest SkyTrain technology expansion in recent history

At a whooping 36km from end-to-end, with 25 stations, the line will be the largest expansion of SkyTrain technology in recent history. I believe this will assuage some critics in Metro Vancouver who have claimed that the expense of SkyTrain technology prevents us from building larger-scale expansions. This is 36km of track being built at once, within 4 years!

6-car trains!

Guangzhou Metro Line 5
Yep, 6-car trains! Pictured: Guangzhou Metro Line 5

The new line will be designed to accomodate 6-car trains on platforms that are 120 m long – 50% longer than those used on the Expo and Millennium Lines. This will not be the first example of a SkyTrain technology transit line with trains longer than 4 cars (the Toei subway Oedo Line in Tokyo runs 8-car trains), but it may be the first done with Mark III trains if Bombardier is awarded the rolling stock contract.

330,000 daily passengers after 30 years

The line is being designed to meet projections of carrying 330,000 daily passengers by the year 2050, which will make it one of the busiest SkyTrain technology lines in the world – and possibly the busiest using Bombardier’s Innovia trains if those are used on the new line. Opening-day ridership is estimated at 70,000 riders.

82km of SkyTrain technology

With the existing Kelana Jaya Line and its extension, the Klang Valley line’s 36km addition will result in over 80km of SkyTrain technology rapid transit in operation in the Greater Kuala Lumpur area.

This will be the second largest network in the world, short of the Guangzhou Metro which is already operating over 100km of linear motor rapid transit and continues to expand that. If the rolling stock is provided by Bombardier, then RapidKL will surpass Vancouver’s SkyTrain to become host to the world’s largest SkyTrain technology system with Bombardier trains.

CSR-Zhuzhou consortium bids, debunks “SkyTrain is proprietary” myth

Naza proposes to finance up to 90% of LRT3 – The Star

According to a recent news report, Chinese rolling stock manufacturer CSR-Zhuzhou, which has previously provided linear motor technology for the Guangzhou Metro and the Changsha Maglev, has bidded for the Klang Valley line in a consortium with local construction firm Naza Engineering & Construction. The Naza-CSR consortium have offered to fund up to 90% of the project cost, in an effort to lure the contract.

If the consortium wins the contract, the trains will then be built by CSR-Zhuzhou rather than Canada’s Bombardier. They will still have to fit the specifications in the alignment study, meaning that linear motor propulsion trains – likely based on the ones in service in Guangzhou – will be used.

A Naza-CSR win would mark the second time in history (the first being Tokyo) that a SkyTrain technology rapid transit system is operating vehicles from two different manufacturers, effectively debunking a commonly spread idea throughout this region that “SkyTrain technology”, which was originally developed in Canada, is proprietary. The Greater Kuala Lumpur region is familiar with CSR-Zhuzhou: they had previously provided rapid transit vehicles (of standard rotary propulsion tech) for the region’s older Ampang Line.

Bombardier eyeing Klang Valley Line, sets up resources in Malaysia for prospective bid

Bombardier targets sales in the Asia Pacific to reach 25% in the next 5 years – XSInvest

A representative from Canada’s Bombardier Transportation (the manufacturer of our Expo and Millennium Line SkyTrain cars) has previously stated that the company is eyeing a train order for the proposed Klang Valley Line project, as well as other proposed heavy rail rapid transit projects throughout the region. Bombardier Rail opened a new office in Kuala Lumpur last year to facilitate operations in Malaysia and throughout Asia, accomodating 100 engineering, project management, systems integration and signalling specialists. If Bombardier bids for the Klang Valley line, they will then be in open competition with CSR-Zhuzhou and any other bidders for the line rolling stock.

Debates over: the line is opening in 5 years

LRT3 Tender Documents Ready for Collection – RapidKL

While we can’t seem to decide on transit projects or technologies here in Metro Vancouver, the Klang Valley region has progressed quickly and the project owner has already started the call for construction tenders. This is not just a proposal at this point – the consultations have been finished, and the project is moving forward. The line will be open for service just 5 years from today.

About Kuala Lumpur’s “Rapid Rail” system

Kuala Lumpur's integrated rail system. The Kelana Jaya line is in magenta.
Kuala Lumpur’s integrated rail system. The Kelana Jaya line is in magenta.

Kuala Lumpur’s RapidKL network is like a clone of our SkyTrain system overseas: the system is composed of several grade-separated, automated (driverless) rapid transit lines. Some use the same linear induction motor propulsion technology and Bombardier Mark II vehicles used on SkyTrain here in Vancouver, whereas others use standard rotary motor technology (as with the Canada Line). The Ampang Line, the first rapid transit line, used standard rotary propulsion and was opened in 1996. This was followed by the 1998 opening of the Kelana Jaya Line, the fully automated linear-propulsion line that looks and works exactly like our SkyTrain system, with the same Mark II trains.

The 29km Kelana Jaya Line is built with both overhead sections and bored tunnel sections through the city core. It is the busiest and most popular rapid transit line in metropolitan Kuala Lumpur with 160,000 riders daily [1], and was for a long time the only rapid transit service in the Klang Valley metropolis that broke even (revenues paid for operations costs) until the Ampang Line, which had historically fallen a few thousand riders short from breaking even [1][2], was equipped with thec system to itself become fully automated (driverless) [3]. Both lines are currently receiving extensions that are due to open at around the same year the Evergreen Line is opened here in Vanouver.

The extensions are shown in the above map (note the unnamed stations near the bottom). Kuala Lumpur’s Rapid Rail system has been immensely successful since its opening, being major money generators for the regional rapid transit system and the biggest drivers of ridership and high-density development. SkyTrain technology helped the fares on RapidKL’s rapid transit lines remain completely unchanged for 10 years [4], despite hydro bill increases for the operating company, as a result of continually increasing ridership [5]. The RapidKL network is considered the “key revenue-generator contributor” for Prasarana, the regional transportation authority if the Klang Valley [6]

Sources/footnotes
  1. Passenger numbers from Urban Rail Development Study, page 19 [LINK]
  2. The Ampang Line breaks even at 170,000 riders daily, according to Malaysian Business (article “Red Flags” from 16 June, 2000 issue – not available online) – most recent recorded ridership was 141,000 daily
  3. The Kelana Jaya Line has been automated from start of service; the Ampang Line was refitted with the Thales SelTrac system in 2012 [SEE HERE]
  4. LRT, Monorail fares to go up next year – Astro Awani report [LINK]
  5. Prasarana Power Cost Up 17% since Jan 1 – The Edge Malaysia [LINK]
  6. Description page on Rapid Rail Sdn Bhd [LINK]

SkyTrain technology declared for 60km outer belt metro in Tokyo

SkyTrain technology declared for 60km outer belt metro in Tokyo

“SkyTrain technology” (linear motor propulsion, with automated operation) has been declared for a major investment in rail rapid transit in the outer boroughs of the city of Tokyo, Japan – the world’s largest metropolitan area with over 38 million people residing.

Map: Proposed "Metro 7" and "Eight Liner" rapid transit line circling outer Tokyo. The Tokyo Metropolitan Bureau of Transportation wants to use SkyTrain technology to reduce the project costs of this transit line.
Map: Proposed “Metro 7” and “Eight Liner” rapid transit line circling outer Tokyo, which will run under the city’s 7th and 8th Ring Roads. The Tokyo Metropolitan Bureau of Transportation wants to use SkyTrain technology to reduce the project costs of this transit line.

The proposed lines – initially two separate projects codenamed “Metro Seven” and “Eight Liner” – will be merged into a single project that is 59.7km long, with 42 stations.

There is an additional 13.7km extension to Tokyo’s Haneda Airport (bringing the total project length to a whooping 73.4km) under consideration. It has not been finalized as part of this proposal and is pending further study, likely given that other Haneda-oriented rail projects are currently being considered by other operators.

Case study

I was given a link to a study on the Itabashi ward website, which concluded that the use of SkyTrain technology would significantly save costs and improve the project business case, due to significant reductions in tunneling and land acquisition costs.

LINK: 平成25年 – 度区部周辺部環状公共交通に係る調査 – 概報告
English: 2013 Fiscal –Outer Ward Circumferential Public Transit Study – Summary Report

The Tokyo Metropolitan Bureau of Transportation (Toei) has proposed to build and operate the subway line with public funds, a rarity in a country where most major railways are built and operated by private companies.

Linear Motors Save Costs

The new metro line in Tokyo will use a new specification called “Smart Linear Metro“, which is identical to the 69km SkyTrain technology railway line proposed in Okinawa. Short, 12m long cars – similar to Vancouver’s Mark I SkyTrain vehicles – will enable a further reduction in tunnelling height, curve radius and land costs compared to 16m long “standard linear metro” cars already in use in Fukuoka, Yokohama, Kobe and other cities, which themselves allow for smaller tunnels than standard 20m rotary propulsion metro cars. To enable the high carrying capacity required for a Tokyo metro line, multiple-car, articluated units will be used.

Through the reduction in tunnelling and land acquisition costs – made possible by the key advantages of linear motor propulsion in lower floor heights and tighter curve radii – the use of SkyTrain technology is estimated to save taxpayers the equivalent of $300 million Canadian dollars.

Slides from the case study (tap to enlarge):

Trains will initially operate every 3 minutes during peak times on the higher-demand western segment, whereas a 5 minute frequency will be used on the eastern segment.

Popular in Japan

Japan is one of the world countries that has recognized the benefits of SkyTrain technology and pushes a widespread application of SkyTrain technology in every new railway project. There are now 9 lines in 6 cities running, under construction or under consideration. The new circumferential line will be the 9th such line in Japan, and the 20th such line in the world.

The Toei Oedo subway has been operating since 1991, and had one extension in 2001.
The Toei Oedo subway has been operating since 1991 and is one of the busiest Tokyo subway lines.

Toei has previously demonstrated SkyTrain technology successfully on the Toei Oedo Line, a major Tokyo subway line with a ridership of over 850,000 passengers daily. The Oedo Line has operated successfully for over 23 years. It’s no surprise that with this record, Toei would want to build another such line.

See also: List of Linear Induction Motor Rapid Transit Systems

New SkyTrain technology metro in Sendai, Japan opens 2015

New SkyTrain technology metro in Sendai, Japan opens 2015
sendai-map
Sendai Subway map showing the new Tozai Line (east-west line in blue)

A brand new rail rapid transit line in Sendai, Japan – which is using linear induction motor propulsion technology (“SkyTrain technology”) – is on track to open next year (2015), with final construction activities and train testing underway. The Tozai Line will be 14km long, and feature a mix of underground and elevated sections.

The use of SkyTrain technology is now confirmed by more than a concept photo, as the linear-motor rolling stock has arrived and pictures have surfaced showing linear motors on the subway track. These initial trains have passed their testing, keeping the line on-track to open exactly one year from now on December 6, 2015.

A new video featuring the rail transit project, showing the unveiling of the SkyTrain-tech rolling stock and construction progress, was recently updated to YouTube. As part of these unveilings, school children were allowed to be a part of the event, inspiring a future generation of transit riders.

New construction photos of the Sendai Subway’s Tozai Line has recently hit the internet. The photos below were posted on the official project Facebook page:

The Tozai Line was originally scheduled to open much earlier, but construction was delayed by the devastating 2011 Tohoku Earthquake and Tsunami, which heavily damaged much of the city. The new subway line will therefore be part of the revitalization movement for Sendai City.

Japan is one of the world countries that has recognized the benefits of SkyTrain technology and pushes a widespread application of SkyTrain technology in every new railway project. There are now 8 lines in 6 cities running, under construction or under consideration. Sendai Subway’s new Tozai Line will be the 7th such line in Japan, and the 18th such line in the world.

Sendai’s project is one of seven SkyTrain technology projects concurrently under construction around the world – the other projects are in Vancouver (Evergreen Line), Kuala Lumpur, Malaysia (Kelana Jaya Line extension), Guangzhou, China (Metro Line 4 & 6 extensions) and Beijing, China (Airport Express west and north extensions).

See also: List of Linear Induction Motor Rapid Transit Systems

A recent SkyTrain-tech project, announced for the island of Okinawa, Japan, will be the largest one-time SkyTrain technology project in the world at 69km long.

Okinawa, Japan declares SkyTrain technology for 69km urban and intercity railway

Okinawa, Japan declares SkyTrain technology for 69km urban and intercity railway

Okinawa Railway System - Urban elevated railway station concept

As you may recall (or not, since I have yet to actually discuss anything Japan-related on this blog!), I departed Metro Vancouver in September of this year to pursue a scholarship-supported abroad studies program in Kyushu, Japan. My studies include a transportation research component – and through this, I initially received word that Okinawa would use linear motor cars on its inaugural island railway – a.k.a. “SkyTrain technology”.

As of this week, a number of online articles in Japanese have now surfaced, revealing project details and effectively confirming SkyTrain technology for Okinawa’s first major rapid transit line.

News release: 知事選で高まる気運 リニアモーターを使った沖縄の「普通鉄道」建設構想とは (English: Election momentum growing: plan outlined for Okinawa’s linear motor railway)
Translated (Google): [LINK]

This means that linear motors and reaction rails (locally termed in Vancouver as “SkyTrain technology”) will be used to propel trains on the island. Japan is one of the world countries that has recognized the benefits of SkyTrain technology, with 7 lines running or already under construction in 6 cities. Okinawa’s railway will be the 8th such line in Japan, and the 19th such line in the world.

See also: List of Linear Induction Motor Rapid Transit Systems

The news release linked above emphasizes that every candidate for prefectural governor (there is an election coming up in Okinawa!) is supporting the proposed rapid transit line. This is because the line will be 30% cheaper to ride end-to-end than the current express bus service, due to efficiencies for the island’s transit operator. It is expected to cut travel time across the island in half, to 58 minutes from the current 1 hour and 45 minutes by rapid express bus.

There will be two primary segments. The 20km segment between Okinawa City and Naha Airport will feature an urban metro-style service. Trains will initially run every 5 minutes during peak hours, and every 12 minutes off-peak. The 49km segment between Okinawa City and Naga City will be the world’s first intercity railway using SkyTrain technology. Trains will initially arrive every 15 minutes during peak hours and every 20 minutes off-peak.

Map of proposed 69km SkyTrain-type railway in Okinawa
Map of Okinawa’s 69km SkyTrain technology railway

The line will initially use 4-car trains, with shorter 12m long cars – similar to Vancouver SkyTrain’s Mark I vehicles. They will be low-height vehicles capable of running through smaller tunnels.

最高速度は100km/hが目標とされており、長さ12mの車両の4両編成が考えられています。1両あたりの長さが約15.7mである長堀鶴見緑地線の車両が、4両編成で定員が380人なので、12m×4両では単純計算で290人程度の定員があることになります

English: Trains will have a maximum speed of 100km/h, and the government has considered using 12m length cars. For comparison, trains on Osaka’s Nagahori Tsurumi-Ryokuchi line are 15.7m long. Those trains carry 380 people, so we imply that Okinawa’s trains will carry 290 people between the 4 cars.

In order to navigate the island’s challenging terrain, 70% of the proposed line will be in a tunnel, which means the linear motor trains – which have lower train heights and require smaller tunnel diameters – will save the local government billions of dollars in tunneling costs. A standard rotary propulsion railway would have also likely required more tunnels, given linear motor vehicles are capable of handling steeper slopes at higher speeds, avoiding the need for tunnels and landscaping in certain segments.

Case study

With further searching, I was able to uncover a case study document that included conceptual art for the proposed rail line:

LINK: 新たな公共交通システム導入促進検討業務 – 報 告 書 – 概 要 版 – 沖 縄 県 (English: New public transit system promotional business case – Executive Summary – Okinawa Prefecture)

According to the study, the SkyTrain-type rapid transit line was initially compared on a level playing field with a variety of other transit options – including Tram-Train – a form of ground-level Light Rail Transit (LRT), and Bus Rapid Transit (BRT) – and won against these options, found to be the most worthwhile investment as it would generate the most travel time benefits for local citizens.

The linear motor transit systems examined in the study included the Bombardier ART (SkyTrain) systems in New York and Beijing.

About Okinawa

A map of Okinawa prefecture - from Wikimedia Commons, license CC-BY-SA
A map of Okinawa prefecture – from Wikimedia Commons, license CC-BY-SA

Okinawa, a well-populated and internationally well-known island south of the 4 main Japanese islands, is contrary to the rest of the country in that it has yet to see any serious developments in rail transit. There is a 12.8km monorail, called Yui Rail, in the main city (Naha), but that is it – the rest of the population must take buses or drive automobiles to travel longer distances.

The new railway will significantly improve transit travel times and create a new option to combat rising congestion levels on the Okinawa Expressway, a major toll road crossing the island. The entire railway will be 69km long, which will immediately make it the third longest SkyTrain-technology rail system in the world upon completion. Vancouver’s SkyTrain system (which will grow with the completion of the Evergreen Line) and Guangzhou, China (where three SkyTrain technology lines cover 100km of track) are the only longer systems.